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Heat Flow in an Exactly Solvable Model 
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A chain of one-dimensional oscillators is considered. They are mechanically 
uncoupled and interact via a stochastic process which redistributes the energy 
between nearest neighbors. The total energy is kept constant except for the 
interactions of the extremal oscillators with reservoirs at different temperatures. 
The stationary measures are obtained when the chain is finite; the thermody- 
namic limit is then considered, approach to the Gibbs distribution is proven, 
and a linear temperature profile is obtained. 
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1. INTRODUCTION 

The aim of this paper is to obtain rigorous results for the heat conductivity 
in lattice systems. We will consider a system of one-dimensional harmonic 
oscillators. It is well known that harmonic chains do not obey Fourier's law 
(see, for instance, Ref. 1); however, they have been extensively studied 
because somehow they are more treatable from a mathematical point of 
view. Nonharmonic effects rule the heat flow in more realistic models and 
so they should be taken into account. A way, which is not, of course, the 
only possible one, is to simulate them by stochastic processes whose result 
is to lead the chain to the "right" stationary state which describes the heat 
flow. For instance, in Ref. 2 each oscillator was coupled to a reservoir at a 
definite temperature (different for each oscillator) via a Fokker-Planck 
force. The temperature profile is chosen so that these reservoirs on the 
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average do not give energy to the chain and therefore do not contribute to 
the heat flux. 

In Ref. 6 a completely mechanical system is considered. This is a 
one-dimensional quantum model. Finitely many atoms interact pairwise via 
a common coupling with suitable intermediate reservoirs. The ends of the 
chain interact with reservoirs at different temperature. The model is studied 
in the so-called "weak coupling limit," and it becomes a stochastic process 
analogous to the one we consider here and essentially the same as that 
treated in Ref. 3. The stationary measures exhibit a temperature profile and 
a heat flux which satisfies Fourier's law. 

In this paper we consider uncoupled one-dimensional oscillators and 
we simulate the effect of the "forces" leading to the stationary state by a 
stochastic process which redistributes the energy between nearest-neighbor 
oscillators keeping constant the total energy of the system. The oscillators 
at the extremes of the chain are coupled to reservoirs at different tempera- 
tures according to a Glauber process and in this way energy is transferred 
to the system. While this looks quite rough from a physical point of view, it 
has, surprisingly enough, the advantage of being exactly solvable. 

An analogous way to simulate local "thermalization" was introduced 
in Ref. 3. By this procedure measures are obtained that are locally similar 
to Gibbs distributions, whose temperatures are space dependent. These are 
not the only measures exhibiting a temperature gradient. For instance, in 
Ref. 4 different measures are introduced in a very natural way and other 
procedures are easily conceivable. A physically correct choice among these 
possibilities is an interesting and still open problem. 

In Section 2 we introduce in a more detailed way the model we will 
consider and we reduce its analysis to the study of a system of interacting 
random particles. This is accomplished by using the techniques of "as- 
sociation"; for a review on this point see, for instance, Ref. 5. The 
probability estimates are obtained in Section 3 and the results are reported 
in Section 4. 

2. THE MODEL AND THE ASSOCIATE PROCESS 

We consider a system of one-dimensional oscillators; for x = - L ,  
- L + 1 . . . . .  L, qx, Px E • X g{ describe, respectively, position and veloc- 
ity of the "x"  oscillator, the phase space being therefore (R x R) 2L+ 1. The 
oscillators are mechanically uncoupled; the energy is the sum of the 
energies of the single oscillators, i.e., ~ q~ + p~ (in suitable units). The 
system undergoes a stochastic time evolution defined as follows: choose a 
couple of nearest-neighbor sites and let the oscillators exchange energy 
according to a microcanonical procedure, i.e., keep the total energy fixed 



Heat Flow in an Exactly Solvable Model 67 

and redistribute it with uniform distribution on the surface of constant 
energy. At the boundaries, _+ L, thermalize the oscillators according to the 
Gibbs distribution with temperatures T_+ (T+ ~a T_ ). It is convenient to 
introduce the random variables ~ ,  x E [ - L , L ] ,  taking values in R+; ~ 
gives the energy of the xth oscillator. It is easy to see that in the stationary 
distribution the conditional probability of q~, p~ given ~ is the Lebesgue 
measure on the sphere q2 + p~ = ~x. Therefore we will restrict our consider- 
ations to the process for the variables ~x, x E [ -  L, L]. 

Lemma 2.1. The values f~<, ~'~+l of the energies at x , x  + 1 when the 
couple x, x + 1 is chosen are given by 

<~< = p(,~x + ,~x+ l) ~ '+l  = (1 - p)(<~x + ix+l) ,  p ~ [ 0 ,  l ]  (2.1) 

where (x and ~ x + l  a r e  the values of the energies before the rearrangement. 
The distribution of p is uniform, i.e., the Lebesgue measure in [0, 1]. 

The proof of this lemma is elementary and so it is omitted. 
Let 

�9 , i l~2L + 1 (2.2) ~(~> = (~_~,.. ~ )  ~oo+ 

The generator G (L) of the stochastic evolution we described before is given 
by 

L - - I  f01 (G(L)f)(f(L)) = E d_p [ / ( f - L , . - .  ,P(~x + ix+l), 
x ~  - - L  

(1 - p ) (~  + ~ + , )  . . . . .  ~L) _ f(~(L))] 

+fo . . . .  

+ fo ~176 df '  fl + e-Zt+*'[ f ( i -  L . . . .  , f ' )  - / ( f ( L ) )  ] (2.3) 

[~2L+l f le-#~d{ the Gibbs distribution for the energy of with f function on o~+ , 
a harmonic oscillator at temperature T = 1/Kfl,  and r _  [f l+] the inverse 
temperature of the left (right) reservoir. It is easy to see that the Markov 
process with generator G (L) has a unique stationary measure, #z L. In the 
limit L---~ oo, #z c should approach the Gibbs measure, namely, ix should 
have exponential distribution. The natural quantities to compute are there- 
fore the mean values of the functions 

F(k,  0 = ~ -'~T.x ! , ~-"x kx < oo, k = (kx) x e~ (2.4) 
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because for an exponential law we have 

fO  ~ X k _~. X e - X X  d x  = X - k  

We ,now introduce a family of (continuous time) Markov processes which 
are related to the one generated by G (I") via Theorem 2.1 which will be 
stated below. 

Definition 2.1. Given L let 

8 ( _  + )  -- + - ( L +  1) (2.5) 

I L = [ - L , L ]  tO 8 ( - )  tO 6 ( + )  (2.6) 

We then consider the Markov process on ~11L (~ = 0, 1 . . . .  ] whose genera- 
tor AI" is given by 

( A i " f ) ( n ~ (  _ ) , n _  I" . . . . .  n c ,  n s ( + ) )  

L -  1 n i h- ni+ I 

= Z 1 Z [ f ( n , ( _ ) n _ i . , . .  n i _ , , q ,  
i = - L  Hi ''[- n i - 1  ''[- 1 ' " q=0 

n i + n i + l  - q ,  �9 . . , nL ,  n ~ ( + ) )  

- f ( n ~ ( _ )  . . . .  , nn( + ) ) ]  

+ f ( n , ( _ )  + n _ L , O  . . . . .  ng(+)) - f ( n , ( _ ) , n _ L ,  . . . , nL ,  n , ( + )  ) 

+ . . . . .  l ,  + . . . . .  

(2.7) 

We denote by Q(c) the Markov process generated by A L, n t will be the 
family of random variables n~(_) . . . . .  n~(+) at time t, n o = n. Q(/~) de- 
scribes the motion of Inl (=  n~(_) + - - -  + n~(+)) indistinguishable parti- 
cles which move on I L and are stuck when arriving at 8 (+) ,  absorbing 
boundary conditions at 6(+_). In the interior the motion is specified by the 
following rule. At each pair of sites x, x + 1, - L  ~< x ~< L - 1, there is a 
clock which rings with exponential law, the clocks ring independently from 
each other. When the x, x + 1 clock rings the particles at x and x + 1 
redistribute among these sites. Namely, let n x be the number of particles at 
x, nx + l at x + 1, then choose p uniformly between O, 1 , . . . ,  n x + n x + ~ and 
p u t p  particles at x and n~ + n~+ 1 - p  at x + 1. There are clocks at 6(+_) 
also, and they describe the absorption of particles at 8(+_), namely, when 
the 6(+)[8(_)] clock rings the particles at + L [ - L ]  go to 8 ( + ) [ 6 ( - ) ] ,  
where they will remain forever. 

Notice that during this evolution the total number of particles is 
constant, and that those stuck at the boundaries must increase. It is clear 
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that "eventually" all the particles get out of [ - L ,  L]. Therefore the asymp- 
totic properties of this motion are completely described by the exit distribu- 
tion. 

In the sequel we will use the following notation. 

Def in i t ion  2.2. Let 

k = (k  t . . . . .  kr) ,  /~= (0,k_ L . . . . .  kL,0 ) 

n = ( n ~ ( _ ) , n  L , . . . , n L , n ~ ( + )  ), h = ( n _  L . . . .  ,nL)  

f f (n ,~(L))  = F(h ,~(L))  fl;n~<+>fl_-n~<_> 

where F was defined in Eq. (2.4); then 

F(k ,~(L) )  = ff(l~,~(L)) 

T h e o r e m  2.1. For every t ~ •+ 

r )d~,L,=f;(,,,,~(o L>) -~'-> 
where ~z (L) denotes the Markov process for the random variables ~t (L) r 
generated by G (L) [see Eq. (2.3)] and starting at ~,(__L o) = ~ 0  ( L )  . 

Proof.  This is the classical relation for association (see Ref. 5), and 
we only need to prove that 

To prove this we will treat separately each term appearing in the sum 
defining G (L) [see Eq. "(2.3)]. In the term "x"  everything remains un- 
changed except (~k~/kx !)(~-+l'/kx + 1 !); this is changed into 

1 1 '(r + r  ,x+,j E : -  k~! k~+l! 

= E "~x ('k~'k~+kx+t-k'~x + 1 1 C,~ folPX~(1 _ p)k~+,dp 
k=o k~ik~+l! k~+k~+, 

1 ek~t. kx+, 

where C,~, n < m, is the number of ways n elements can be chosen among 
m. Since 

fo m! n! 1pro(1 - p ) " d p =  (m + n)! (m + n + 1) 

l kx+~x+, [ ~ ~,~+l-~ ~x ~ ~,+l' ] 
E =  k ~ + k ~ + , + l  k~__0 k---~ ( k ~ + k ~ + , - k ) !  kx! k~+,! 
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which is just the term corresponding to ALff(JC,~(L) ) when in Eq. (2.7) i is 
chosen to be equal to x. For the boundary points, take L for instance, we 
have to replace kL ~L/kL! by [see again Eq. (2.3)] 

f o o  fl+ e_/~+~ ~kL d ~ -  ~kL = fl+kL ~kL �9 
k L ] k L ! k L ! JO 

Corollary 2.1. We have 

f F ( k , ~ ( L ~ ) d ~ t  = ~ f l Y ~ k §  (2.8) 
k+ + k _ = l k  I 

where/~L is the only stationary measure for the process generated by G (L) , 

and 

qL(k;  k+ ,k_  ) = QL({k+ particles will exit at 3(+) and k_ at 3(_)}) 

(2.9) 

Proof .  It is obtained from Theorem 2.1 by letting t go to infinity so 
that on the left hand side we obtain the limiting distribution ~L for the 
process ~t (L). �9 

3. ASYMPTOTIC BEHAVIOR OF qL 

The study of the stationary measure ~L is reduced to that of qL via 
Corollary 2.1 and so we will need probability estimates for the exit 
distribution of particles moving according to the process defined in Defini- 
tion 2.1. It will be convenient to regard this process as imbedded in another 
one in which each particle has a label, this will be the x process defined in 

Definition 3.1. x process. The particles have a label and move in I L 

as follows: Choose x, x + 1 [ -  L < x < L - 1] as in Definition 2.I with 
equal probability. Particles sitting elsewhere than x, x + 1 do not move. 
Compute the total number of those at x, x + 1, let it be n x + G + r  Choose 
the integer p uniformly between 0 and n x + nx+ 1 and independently a 
permutation of the n x + G + I  labels of the particles at x and x + 1. Then 
put the firstp particles [i.e., those with the labels corresponding to the firstp 
elements of the permutation] at x and the others at x + 1. Like Definition 
2.1 when 3(+_ ) are chosen the particles at +_ L transfer to 3(_+ ) where they 
will remain forever. 

It is clear from the definition that this process satisfies the properties of 
the n process, that is to say if we only observe the number of particles 
sitting at each site we recover the n process of Definition 2.1. 

Finally denote b y p L ( x  1 . . . . .  xw; q . . . . .  eN), e i = +_ 1, i = 1 . . . N the 
probability in the x process that particle i exists at 3(ei) given the initial 
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condition x 1 . . . . .  x N. We clearly have 

X . . :, . . , q L ( n ; k + , k - ) = ~  PL( 1, �9 XN; ' , ,  , ' N )  

where 

(3.1) 

N / 1 if y =  X 
l x ( x i ) = n x ,  I x ( y ) =  [ 0  i f y v  e x  

i = 1  

[nl = N 

and ~ *  is the sum over all the sequences ci, i --- 1 . . .  N such that the total 
number  of l 's is k+ ,  i.e., ~N=~c i = 2k+ - N .  

Propos i t ion  3.1. Let p~L)...xo be the x process with n particles 
initially at x ~ . . . x  n. Let r e < n ,  i s . . . i  m a subset of 1 . . . n ,  y j = x ~ ,  

j = 1 . . .  m. Then the P ~ ! . x ,  process for the random variables xi~(t ) 
. . . . .  Xim (t) is isomorphic to the p ~ ) . y ~  process of m particles with initial 
condi t ionyl  �9 �9 .Ym. In particular for any 1 < i < n 

p L ( x ~  . . . . .  x , ;  q ,  . . . , c , )  

e i = ~ l  

" ~ ' I ) L ( X 1  . . . .  , X i - - D X , + I  . . . .  , X n ;  ' 1  . . . .  , ' / - - 1 , ' i + 1  . . . . .  ' n )  ( 3 . 2 )  

Proof. Assume x, x + 1 are the sites involved in the displacement of 
particles at a given time. It is clear that the uniform distribution on the 
permutation of N particles induces the uniform distribution on the permu- 
tations of M of them. Therefore we only need to prove that the number  of 
particles at x, after the rearrangement, has the correct law. This is equiva- 
lent to say that if we choose uniformly a subset of M numbers between 1 
and N and then choose a number  0 < p < N then the number  of elements 
of the subset that are smaller than p must have uniform law on 0 , . . . ,  M. 
In other words take X 1 . . . . .  X N independent random variables P ( X  i = O) 
= P ( X  i = 1) = 1/2, then we want to prove that for every 0 < q < M 

) e~=o P X i = ~ X, = M - 1 (3.3) 
N +  1 i i=1 M-3 t- 1 

We introduce the generating function for the variables 

Sin= ~ X i ,  0 < m < N  
i = 1  

P 

T = ~ , X  i 
i = l  

where p as before is distributed uniformly between 0 and N. Then we have 
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for x, y E R+ 

1 E i xyS~)_ ,  r,, ~ N + I  
N N 

E E(xS Y N) - 1 p=0 N +~ =o ~-i((xy)spysu- s~ ) 

1 1 (1 _ ] _ y ) N + l  __ (1 + xy) N+~ 
- N +-------] 2 u y(1 - x )  (3 .4)  

On the other hand if we assume Eq. (3.3) to hold we have another way to 
compute the generating function and so we get 

N 
E(x~vS~)= E C J N Y J ( I + ' ' "  + # ) j + l  

j = O  

_ 1 1 [ + y ) N + l  
y ( 1 -  x ) ( N + I ) 2 N t  (1 

which agrees with Eq. (3.4) and therefore the proposition is proven. �9 

P r o p o s i t i o n  8.2. Given any positive integer N, any x l . . .  x N, 
c 1 . . .  ON, any u E (-- 1, 1) and any permutation o ( 1 ) . . ,  o(N) 

lim [pL(Xl + [ u L ]  . . . . .  X N + I U L ] , ( I . . . ( N )  
L---) oo 

--pL(Xl + [ u L ] , . . . ,  x N - { ' - [ u L ] , ( o ( l )  . . "  ( a ( N ) ) ]  ~---0 ( 3 . 5 )  

where [uL] is the integer part of uL. 

Proof. When two given particles are at neighboring sites they have a 
positive probability to exchange their names. By Proposition 3.1 we can use 
the same argument as in Lemma 3.5 of Ref. 3 and prove the proposition. 

P r o p o s i t i o n  3.3. Given any positive integer N, any x l . . .  XN, 
q . . .  C N, any u E (-- 1, 1), 

lim pr(Xl + [ u L ]  . . . . .  Xs + [ u L ] , e l  . .  "~U)-- I-I pL(Xi +[uL],ei) = 0  
i=1  

Proof. The proposition is proven to hold in the case N = 2 by using 
an analogous argument to that employed in Ref. 3 to prove Theorem 3.2 
for the case k = 2. For every fixed u we define a measure on { - 1, + 1} zxu  
by the following procedure. Let (x 1, Yl) . . . . .  (xn, Yn) be distinct elements 
in 7] • N, ~(x i, yi) the corresponding variables taking values _+ 1, then pose 

PL((~I~(Xi '  Yi) = (i' i = 1 . . .  n)) 

=pL(x, + [ u L ]  . . . . .  x,, + [uL] ,e ,  . . . . .  e.) 

By Proposition 3.1 g/~ is a probability measure and by Proposition 3.2 any 
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weak limit is exchangeable. By using De Finetti's theorem together with the 
factorization property proven for N = 2 we obtain that any weak limit is 
Bernoulli; its parameter can be obtained using Proposition 3.1 and we have 

lirnvLQl(xl, yl) = 1 ) =  (1/2)(1 + u) (3.6) 

which is the exit distribution for a single random walk. From this the 
proposition follows. [] 

4.  R E S U L T S  

In Section 2 we have introduced the variables qx, Px, ~x = q2x + P~, 
x E Z, which denote, respectively, position momentum and energy of the 
oscillator at site x. We have then defined a stochastic evolution for the 
system of oscillators and we have proven the following. 

Theorem 4.1. For every positive integer L the stochastic evolution 
defined in Section 2 for the oscillators in - L , . . . ,  L has a unique 
stationary measure/7 L where 

F l dgL= rI v(dqxdpxl~x) d~L(d~-L . . . . .  d~L) (4.1) 
x = - - L  

where v(dqx dpx I(x) is the normalized Lebesgue (microcanonical) measure 
on the circle q2 +/o~ -- ~x and/ l  L is completely defined by Eq. (2.8). 

Let O denote the algebra of cylindrical continuous bounded functions 
on (N • N) z. Then we have the following. 

Theorem 4.2. Let *[,LI denote the translation of the [uL] = integer 
part of uL, u E ( -  1, 1); then 

lim /~L(rI~Llf) = vr(~)(f), Vf  E O (4.2) 
L---> m 

where 
_- , (  ,+( 1+o ) (4.3) 

and vr is the Gibbs measure for the (independent) oscillators at tempera- 
ture T, namely, 

dVT= ~x [v(dqxdpxl~x) k@e-('x/~rldggx] (4.4) 

Proof. It is enough to study the convergence of the functions F(k, g;) 
[see Eq. (2.4)]. By Corollary 2.1, Eq. (2.8), we need to compute the limit of 
qL(k;k+,k_). By Eq. (3.1) this is related to the limit of pL(Xl. . .  XN, 
q . . . . .  ely ), which is obtained in Proposition 3.3 and Eq. (3.6). Therefore 
the theorem is proven. [] 
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We now want to compute the average energy flux between the oscilla- 
tors at x, x + 1, - L  < x < L -  1. We obviously have 

QL := f dl~L fo'[~ --p(~x + l~+l)]dl?= f dl~t( l /2)(~--  ~x+l) (4.5) 

The o re m 4.3. The heat flux QL defined in Eq. (4.5) is x indepen- 
dent: 

1 1 t) 
Q L = ,~L ( fl + - f l  -- (4.6) 

K dT (u) 
a = - 2 du ' - l < u < l  (4.7) 

where T(u) is defined by Eq. (4.3), K is Boltzmann's constant ( 13 - 1 = KT), 
and 

a = lim LQL (4.8) 
L---~ c~ 

Equation (4.7) proves Fourier's law with heat conductivity coefficient K/2. 

Proos Equation (4.6) is a consequence of Eq. (4.5) and Corollary 
2.1. The remainder is obvious. �9 

Remark. The value of the heat conductivity depends linearly on the 
intensity of the process. In Section 2 we have chosen unit rate. 
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